Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Increasing the achievement of students in Science, Technology, Engineering, and Mathematics (STEM) from early grades to college coursework continues to be at the forefront of educational transformations and research. There is a need for stakeholders at various levels of education to collaborate and confront the complexities of STEM teaching and learning, especially in areas like mathematics education. In recent decades, active learning in college mathematics coursework focusing on collaboration and inquiry-based learning has been proven to positively impact student learning outcomes and is transforming how students and faculty experience mathematics. Active learning environments also provide a unique opportunity to engage undergraduate learning assistants with faculty where they can support near-peer students and deepen their own understanding. Situated within a scholarship program interested in recruiting, retaining, and supporting future STEM teachers, researchers seek to understand what aspects of undergraduate student participation matter most their development and interest in STEM and teaching. In particular, this paper examines scholarship participants serving as learning assistants in active learning college mathematics classrooms to see where and how they find value in their experience. Implications of this research can inform faculty and university programs on how they might prioritize and transform learning opportunities for students to impact their current and future development in STEM and beyond.more » « less
-
The need for a comprehensive, high-quality pipeline for the development of undergraduate pre-service teachers, especially those that represent a diverse student body, within STEM disciplines is acute. Here, we studied the NoyceSCIENCE program to determine the most impactful experiences offered to undergraduates through the lens of student development theory. We used qualitative coding to analyze data collected from journals ( n = 29) written by students of varying backgrounds, and at varying levels within the program (i.e., the Scholar and Intern level) over a 3-year program running period. We observed that faculty mentorship, the ability of undergraduates to mentor others, volunteer experiences, and learning directly from experts had the greatest influence on student development overall. For Scholars that participate for more than 1 year in the program, access to undergraduate mentoring and volunteering experiences contributed most to student development. We posit that these findings are broadly applicable to other science learning communities and STEM content-focused teacher preparation programs as they are program components that can be integrated in isolation or in their entirety.more » « less
-
Graziana, K. (Ed.)In the current climate of a technology-centered world and standards-based educational system, the vision of including computer science and computational thinking at the elementary level has gained momentum in recent years. This paper examines the similarities between elementary mathematics and computer science content standards and practices, and describes a hands-on, visual coding curriculum that allows teachers to integrate the two into mathematics instruction that meets the requirements of the standards using research based instructional strategies.more » « less
An official website of the United States government

Full Text Available